Introduction to
Interactive Ray-Tracing

Philipp Slusallek

Overview

* Motivation
® Ray-Tracing Algorithm
® Ray generation, traversal, intersection, shading
* Rasterization Pipeline
® Ray-Tracing versus Rasterization

® Benefits & Drawback
® Open Issues

Ray-Tracing Algorithm

\$/ Point Light Source
NN
Occluder;: *

diffuse
Objects

Specular
Object ;)‘/"‘--H_kx__k

Ray-Generation

® Generate initial ray for each pixel
® Options

® Reuse samples by reprojection
(RenderCache)

® More samples for anti-aliasing
® Other camera models

Ray-Traversal

* Need to find objects quickly
* Build spatial index structure
® Grid, octree, BSP-tree, BVH, ...
e Advantages
® Logarithmic complexity
® QOcclusion culling
® Problems

® Multiple intersection computations
® Dynamic scenes

Ray-Object-Intersection

* Need to compute intersections fast
® Requires many floating point operations
® But dominated by traversal (2:1 - 4:1)
® Plenty of algorithms
* Choice depending on input data and environment
® Optimizations
® Use SIMD CPU-extensions (SSE, AltiVec, 3D-Now)
e Data parallel execution

* Proper caching of data -SIGGRAPH

Shading

e Shading after visibility has been computed
* No overhead due to overdraw
® Every ray is shaded exactly once
e Can generate new ray
* Shadow, reflection, transmission, ...
* Need to deal with recursion
® Direct use of Shading Languages
® RenderMan (e.g. BMRT) and others

Rasterization Pipeline

e Efficient HW implementation
® Use of object coherence Rasterization
® Speed (up to 45 Mtris/s)
® New features
* Rendering is driven by App.
® Application submits geometry
e Visibility determined at end Fragment Tests

© Z-buffer fragment test Framebuffer

Ray-Tracing versus Rasterization

® Occlusion Culling & Logarithmic Complexity
* RT never even looks at invisible geometry
® RT traversal allows for efficient searching O(log N)
® Rasterization shows linear behavior

® RT wins for complex scenes

® However: Rasterization can be improved
e Early Z-buffer test (e.g. ATI s Hyper-2)
* HW-assisted occlusion test

— Requires similar index structure W

Ray-Tracing versus Rasterization

e Flexibility
® Handling individual or unstructured groups of rays
* Image-based rendering & RenderCache

® Correctness & Image Quality
* Rasterization relies on approximations
® Environment maps, shadow maps, ...
® Ray-Traced images are “correct” by default
* Shadows, reflections, refractions, ...

* Use of approximations is optional
-SIGGRAPH

Ray-Tracing versus Rasterization

e Simple and Efficient Shading
* No overhead
® Direct use of Shading Languages
e Parallel Scalability

® Ray-Tracing is ,,embarrassingly parallel*
® Should scale well with hardware
® |nitial hardware cost is higher than for rasterization

Ray-Tracing versus Rasterization

® Coherence

® Key to efficient rendering
® Rasterization: Object coherence
e Efficient rasterization

® Ray-Tracing: Ray coherence
* Improved caching & reduced bandwidth
« Allows for data parallel computation

* RT has much more coherence than assumed

Open Research Problems

e Hardware
* \What is the best HW architecture?
* Dynamic Scenes

® Optimized rebuild or transformation of index?
* API

® Better alternative to OpenGL~s ,,push model*?
e Can RT eventually replace rasterization?

